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For long waves propagating over a randomly uneven seabed, we derive a modified Korteweg–de Vries
(KdV) equation including new terms representing the effects of disorder on amplitude attenuation and wave
phase. Analytical and numerical results are described for the evolution of a soliton entering a semi-infinite
region of disorder, and the fission of new solitons after passing over a finite region of disorder.

DOI: 10.1103/PhysRevE.70.016302 PACS number(s): 47.90.1a, 46.65.1g, 47.45.2n, 05.45.Yv

I. INTRODUCTION

Attenuation due to multiple scattering of waves by ran-
dom irregularities can be of importance in a variety of sci-
entific and technological endeavors(see, e.g.[1]). After the
seminal work by Anderson[2] in condensed-matter physics,
tools of modern theoretical physics have been applied to lin-
ear wave problems in many branches of classical physics, as
summarized by Sheng[3,4]. Mathematical treatments of lin-
ear waves such as sound and electromagnetic waves can be
found in [5–8]. In recent years, nonlinear waves in weakly
random media have also received considerable attention in
the literature of mathematical physics. Some authors have
studied the effects of prescribed random forcing[9]. Many
others have treated the effects of a random potential(a term
linear or nonlinear in the unknown and/or its derivatives,
with a random coefficient) when added to a classical evolu-
tion equation(KdV, nonlinear Schrödinger or Sine-Gordon).
Extensive surveys of soliton dynamics under random pertur-
bations have been given in[10–12]. Further contributions
include the works by Devillard and Souillard[13], Garnier
[14,15] and many others.

In the linear theory of classical waves, the main physical
consequence of disorder is the spatial attenuation due to mul-
tiple scattering, a phenomenon related to Anderson localiza-
tion [2] in quantum systems. The effect is undoubtedly of
importance in many physical contexts, for example, in fiber
optics where electromagnetic signals must travel hundreds of
kilometers over which random material inhomogeneities
must exist. It is equally important in coastal oceanography
where bathymetric irregularities contribute to sea wave at-
tenuation by wave radiation, in addition to other dissipative
mechanisms by surface-wave breaking, internal and bottom
friction, etc. Earliest theories on sea waves over disordered
seabed are due to Hasselman[16] and Long[17] who em-
ployed the technique of Feynman diagrams. More recent lin-
ear theories are represented by[18] and [19]. Considering
nonlinearity, Rosales and Papanicolaou[20] examined soli-
tons over relatively short and steep bottom roughness(both
height and length are comparable to the typical water depth)
and found that the randomness affects the wave speed. With
similar assumptions on the length scales, Nachbin and Solna
[21] studied wave scattering by bottom disorder. For these
steep roughnesses, both forward and reflected waves are
comparable; the coupling of their spectral amplitudes has

been examined[39]. Further asymptotic results for steep
roughness have been discussed recently by Nachbin[22]. In
a recent note Fougueet al. [23] considered time-reversal of
linear dispersive and nonlinear hyperbolic waves due to
weak disorder, as two limits of Boussinesq system.

In coastal seas, the bathymetric roughness extending over
large areas is often gentle in local slope and small in ampli-
tude. Using the multiple-scales method, Kawahara[24] has
derived evolution equations for unidirectional water waves
of both long and intermediate wavelength relative to the
depth, without however analyzing the physics. Pertinent ap-
proximations for certain model wave equations have been
treated by Benilov and Pelinofskii[25]. Recently Mei and
associates have studied two- and three-dimensional problems
for narrow-banded Stokes waves of intermediate
wavelength-to-depth ratio. Similar to[24] but different from
[19], both the local height and length of the bed roughness
are assumed to be comparable respectively to the wave am-
plitude and wavelength. For unidirectional waves over the
one-dimensional random seabed, the effects on sideband in-
stability and the scattering of soliton envelopes have been
investigated[26]. For several two-dimensional regions of
random bathymetry, the diffraction and attenuation of Stokes
waves have been investigated[27]. In particular, dark soli-
tons are found in the wake of an elongated area. For long
periodic waves in shallow water, harmonic generation is
known to prevail over a smooth bed[28,29]. Assuming the
roughness height to be smaller than the mean depth by a
factor of orderKH!1, and the roughness length scale to be
comparable to the wavelength, the influence of disorder on
harmonic generation has been studied by Grataloup and Mei
[30]. It is found that the amplitudes of the fundamental and
higher harmonics are governed by coupled nonlinear equa-
tions similar to those in optics[31], but with additional terms
whose complex coefficients are deterministic and related to
certain correlation functions of disorder.

In this paper we examine the transient propagation of a
soliton over a shallow water with a weakly random bathym-
etry. The scale assumptions are the same as those in[24] and
Grataloup and Mei[30], but different from[20–22]. After
deriving the asymptotic equation, we shall examine, both
analytically and numerically, how incoherent multiple scat-
tering affects the phase and the amplitude of the coherent
wave at the leading order.
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II. ASYMPTOTIC EQUATION FOR UNIDIRECTIONAL
WAVES

We begin with the well-known Boussinesq equations for
long waves in shallow water. In physical dimensions, the
horizontal and vertical coordinate are denoted byx* ,z* , time
by t* , the depth-averaged velocity byu* , the free surface
displacement byh* , the constant mean depth byH, and the
depth variations byb* . Let K−1 be the characteristic horizon-
tal length anda the characteristic wave amplitude, we as-
sume thatb* /H=OsKHd!1, and introduce normalized vari-
ables(without primes) as follows:

x = Kx* , z=
z*

H
, t = KÎgHt* ,

u =
u*

a

H
ÎgH

, h =
h*

a
, b =

b*

KH2 . s1d

Under the assumptions

e =
a

H
! 1, m = KH ! 1, and e = Osm2d, s2d

the Boussinesq approximation for mass and momentum con-
servation are, to the first order ine andm2,

] h

] t
+

]

] x
fs1 − mb + ehdug = 0 s3d

and

] u

] t
+ eu

] u

] x
+

] h

] x
=

m2

3

]3u

] x2 ] t
. s4d

We assume that the depth fluctuationbsxd is a stationary and
random function ofx, with zero mean.

Within the stated accuracy, the preceding two equations
can be combined to give the stochastic differential equation,

]2h

] t2
−

]2h

] x2 = − m
]

] x
Sbsxd

] h

] x
D + e

]2

] x2Su2 +
h2

2
D +

m2

3

]4h

] x4 .

s5d

Our objective is to study the evolution of a soliton after
entering a rough bed in the region ofx.0. In the region of
smooth bed,x,0 whereb=0, the incident soliton is known
to be described by

h*sx,td = a sech2
Î3

2
S a

H3D1/2

sx* − Ct*d,

with

C = ÎgHS1 +
a

H
D . s6d

It is convenient to choose the wavelength of the incident
soliton as the horizontal scale 1/K, i.e.,

K = S a

H3D1/2

s7d

so thate=m2.
We shall now derive the statistical average of(5). In an-

ticipation that the small disorder affects the leading order
after a long distance inversely proportional to the mean
square of the disorder, we introduce two space variablesx
andX=m2x and expandu andh as power series ofm:

hsx,X;td = h0 + mh1 + m2h2 + Osm3d, s8d

usx,X;td = u0 + mu1 + m2u2 + Osm3d. s9d

The perturbation equations are easily found to be

]2h0

] t2
−

]2h0

] x2 = 0, s10d

]2h1

] t2
−

]2h1

] x2 = −
]

] x
Sbsxd

] h0

] x
D , s11d

]2h2

] t2
−

]2h2

] x2 = −
]

] x
Sbsxd

] h1

] x
D + 2

]2h0

] x ] X
+

]2

] x2Su0
2 +

h0
2

2
D

+
1

3

]4h0

] x4 . s12d

At the leading order,Os1d, the governing wave equation
(10) is homogeneous and deterministic; the solution must
represent coherent waves. We limit ourselves to a right-going
wave with vanishing amplitude atx− t,−`,

h0sx,X;td = u0sx,X;td = zsX;sd, s13d

where s=x− t. The explicit dependence onX and s is yet
undetermined.

At the first orderOsmd, the inhomogeneous equation(11)
has random forcing, and can be solved by using the follow-
ing well-known Green’s function(e.g.,[32])

Gsx,t;x8,t8d = 1
2Hfst − t8d − ux − x8ug, s14d

whereHszd is the Heaviside step function. The formal solu-
tion is

h1sx,X;td = −E
−`

t

dt8E
−`

`

dx8Gsx,t;x8,t8d
]

] x8

3Sbsx8d
] zsx8 − t8,X8d

] x
D . s15d

Clearly h1 represents the incoherently scattered wave and is
random with zero mean.

We now take the ensemble average of(12), and obtain

]2kh2l
] t2

−
]2kh2l
] x2 = −

]

] x
Kbsxd

] h1

] x
L + 2

]2z

] x ] X
+

3

2

]2z2

] x2

+
1

3

]4z

] x4 . s16d

By virtue of (13), the last three terms are all functions ofs
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=x− t, hence are homogeneous solutions of the averaged
wave equation. Together they can be transformed to

2
]2z

] s ] X
+

3

2

]2z2

] s2 +
1

3

]4z

] s4 . s17d

We now examine the first forcing term by using(15),

K− bsxd
] h1

] x
L =E

−`

`

dt8E
−`

`

dx8

3F ]

] x8
Skbsxdbsx8dl

] z

] x8
DG ] Gsx,x8,t,t8d

] x
.

s18d

By assuming the disorder to be homogeneous in the short
scale, the autocorrelation of depth fluctuations is

kbsxdbsx8dl ; Gsjd = Gsx8 − xd s19d

which will be assumed to be a positive and even function of
j=x8−x. It is shown in Appendix A that

K− bsxd
] h1

] x
L =

1

p
E

−`

`

bsk,XdẑsX;kdeiksx−tddk, s20d

whereẑ is the Fourier transform ofz,

ẑsk,Xd =E
−`

`

zsx8 − t8;Xde−iksx8−t8ddx,

andbsk,Xd is the complex coefficient defined by

b =
ik

4
E

−`

` ]

] j
sGsj,Xdeikjdsgnsjdeikujudj. s21d

In view of (20), we get

−
]

] x
Kbsxd

] h1

] x
L =

1

p

]

] s
E

−`

`

eiksbsk,Xdẑsk,Xddk.

s22d

Thus all forcing terms on the right of(16) are function of
s=x− t. To avoid unbounded resonance forkh2l, their sum
must vanish. After integrating this solvability condition with
respect tos, we obtain the asymptotic equation for the lead-
ing order displacement, as seen by an observer traveling at
the linear phase speed(being unity in dimensionless form
and ÎgH in physical scale) during a very long course of
propagation,

] z

] X
+

3

2
z

] z

] s
+

1

6

]3z

] s3 = −
1

2p
E

−`

`

bsk,Xdẑsk,Xdeiksdk.

s23d

This is just a KdV equation modified by the additional term
on the right-hand side representing the scattering effect of
disorder. The timelike coordinateX represents the distance
traveled by the wave. Different from many existing theories
based on various models of random potentials, this new term
is deterministic.

Equation(23) can be brought to a more explicit form as
follows. From(21), we obtain by partial integration,

b =
ik

4
hGsjdeikj sgnsjdeikujuj−`

` −
ik

4
E

−`

`

sGsjdeikjdikeikujudj

= − ik
Gs0d

2
+

k2

4
E

−`

`

Gsjdeikjeikujudj, s24d

where

d

dj
ssgnsjdeikujud = ikeikuju s25d

is used. Since the integrand in the last integral is even inj,
we find

E
−`

`

Gsjdeikjeikujudj =
1

2
E

−`

`

Gsjddj +E
0

`

Gsjdcos 2kjdj

+ iE
0

`

Gsjdsin 2kjdj =
1

2
Ĝs0d

+
1

2
Ĝs2kd + ikP̂s2kd, s26d

where the third term is obtained after partial integration, with
Psjd being defined by

Psjd =E
uju

`

Gsuddu. s27d

Henceb in (24) can be rewritten as

b = − ik
Gs0d

2
+ k2H1

2
Ĝs0d +

1

2
Ĝs2kd + ikP̂s2kdJ . s28d

Substituting(28) into (23), we get, after invoking the con-
volution theorem,

] z

] X
+

3

2
z

] z

] s
+

1

6

]3z

] s3 =
Gs0d

2

] z

] s
+

Ĝs0d
8

]2z

] s2

+
1

16
E

−`

`

GSs − s8

2
D ]2z

] s82ds8

+
1

8
E

−`

`

PSs − s8

2
D ]3z

] s83ds8.

s29d

This equation can be reduced to the one found earlier in[24].
We find the form here more convenient for physical interpre-
tation and for further approximate analysis. Physically the
coherent part of the wave which dominates the leading order
is affected by disorder only on the average, through new
terms on the right-hand side of the extended KdV equation.
In particular, the first term on the right-hand side represents
reduction of the phase velocity. BecauseGsjd is positive-
definite, dispersion is also reduced through the fourth term.
In addition, the second and third terms are of Burgers’ form
and signify diffusion, hence would lead to spatial attenua-
tion. These effects of disorder have been noted in[23].
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One of the physical implications of the new terms above
can be found at once by studying the energy of the coherent
wave. Multiplying both sides of(23) and integrating the re-
sult with respect tos, we get

d

dX
E

−`

` z2

2
ds = −

1

2p
E

−`

`

bskduẑskdu2dk.

Sincezssd is real in alls, its Fourier transformẑskd and its

complex conjugate must satisfyẑs−kd= ẑ*skd. By the fact that
Resbskdd is even and Imsbskdd is odd ink, it follows that

d

dX
E

−`

` z2

2
ds = −

1

p
E

0

`

Resbskdduẑskdu2dk. s30d

From (28), Resbskdd.0 for all positive k. The right-hand
side of (30) is negative. Physically, energy is drained from
the coherent wave for the radiation of the much smaller,
randomly scattered incoherent waves, leading to spatial at-
tenuation ofh0. We point out that the attenuation of sinu-
soidal waves of infinitesimal amplitude is characterized by
exponential reduction of the transmission waves with the to-
tal extent of disorder. It is known that for some nonlinear
waves, spatial attenuation can also be algebraic[13], as will
be the case here.

III. GAUSSIAN CORRELATION FUNCTION

For better insight we choose the correlation function to be
Gaussian, with the correlation length taken to bel* = l /K. The
dimensional correlation function is,

kb*sx*db*sx*8dl = D*2 expS sx*8 − x*d2

2l*2
D , s31d

whereD* is the root-mean-square amplitude of the random
roughness. The normalized correlation function is

Gsjd = D2 expS−
j2

2l2
D , s32d

where

D2 =
D*2

H2

1

m2 =
D*2

aH
= Os1d. s33d

It follows that

Ĝskd = Î2pD2l expS−
k2l2

2
D s34d

and

Psjd =E
uju

`

Gsuddu=Îp

2
D2l erfcS uju

Î2l
D , s35d

where erfcszd is the complementary error function.
The Fourier transform ofPsjd is

P̂skd =
Î2pD2l2

kl
expS−

k2l2

2
DerfiS kl

Î2
D , s36d

where erfiszd is the imaginary error function defined by

erfiszd =
2

Îp
E

0

z

et2dt. s37d

Consequently(29) becomes

] z

] X
+

3

2
z

] z

] s
+

1

6

]3z

] s3

= D2H1

2

] z

] s
+

Î2pl

8

]2z

] s2 +
1

16
E

−`

`

expS−
us − s8u2

8l2
D

3
]2z

] s82ds8 +
Î2pl

16
E

−`

`

erfcS us − s8u

2Î2l
D ]3z

] s83ds8J .

s38d

The effect of disorder, represented by the right-hand side, is
proportional to the mean-square height of the bed roughness.
Before discussing numerical solutions for finite values ofD2,
we examine two limiting cases analytically.

IV. ROUGH BED WITH A SMALL MEAN-SQUARE
HEIGHT

Damping of solitons by weak viscous dissipation in the
bottom boundary layer has been studied before[33,34]. We
follow the method in[34] (as described in[35]) and consider
a case of small mean-square heightD2!Os1d. Introducing a
slow variableX1=D2X and expandz into a power series of
D2,

z = zs0dsX,X1;sd + D2zs1dsX,X1;sd + OsD4d s39d

we get from(38) the perturbation equations

] zs0d

] X
+

3

2
zs0d] zs0d

] s
+

1

6

]3zs0d

] s3 = 0, s40d

] zs1d

] X
+

3

2
zs0d] zs1d

] s
+

3

2
zs1d] zs0d

] s
+

1

6

]3zs1d

] s3 = −
] zs0d

] X1
+

1

2

] zs0d

] s

+
Î2pl

8

]2zs0d

] s2 +
1

16
E

−`

` ]2zs0d

] s82 expS−
ss − s8d2

8l2
Dds8H

+
Î2pl

16
E

−`

` ]3zs0d

] s83 erfcS us − s8u

2Î2l
Dds8J . s41d

Denoting

r = s − csX1dX s42d

(40) can be transformed to

]

] r
H− c +

3

4
zs0d +

1

6

]2

] r2Jzs0d = 0. s43d

The solution forzs0d is the well-known soliton

zs0d = A sech2FÎ3A

4
Ss −

A

2
XDG , s44d

where the local phase speedcsX1d=A/2 and local wave-
lengthÎ4/3A vary slowly with X1 through the local ampli-
tudeAsX1d, whose initial value isAs0d=1.
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Using the transformation(42), the linear equation(41)
can be written as

]

] r
H− c +

3

2
zs0d +

1

6

]2

] r2Jzs1d = RHSs41d. s45d

Now the differential operators of(43) and(45) are adjoint to
each other. By applying Green’s identity, we obtain the solv-
ability condition,

E
−`

`

zs0dRHSs41d =E
−`

`

drzs0dH−
] zs0d

] X1
+

1

2

] zs0d

] r

+
Î2pl

8

]2zs0d

] r2 +
1

16
E

−`

` ]2zs0d

] r82

3expS−
sr − r8d2

8l2
Ddr8

+
Î2pl

16
E

−`

` ]3zs0d

] r83 erfcS ur − r8u

2Î2l
Ddr8J

= 0.

In the curly braces, the second and fifth term do not contrib-
ute to the integral due to their oddness inr. Therefore, we
obtain after integration by parts,

−
1

2

]

] X1
E

−`

`

zs0d2dr −
Î2pl

8
E

−`

` S ] zs0d

] r
D2

dr

+
1

16
E

−`

`

drzs0dE
−`

` ]2zs0d

] r82 e−fsr − r8d2/8l2gdr8 = 0

which yields finally an ordinary differential equation for the
soliton amplitudeAsX1d

] A

] X1
= −

Î2pl

10
A2 −

Î3

16
A3/2FsÎ6lA1/2d, s46d

whereF is defined by

Fsud = 2E
0

`

dp sech2 pE
0

`

s3 sech4 q

− 2 sech2 qd · se−fsq − pd2/u2g + e−fsq + pd2/u2gddq

s47d

which is plotted in Fig. 1.
At large X1@1, AsX1d becomes small. Then the second

integral in (47) is dominated by contributions nearq=p,
henceFsud can be approximated for small argument by

Fsud < 2E
0

`

sech4 ps3 sech2 p − 2ddpE
−`

`

e−sj2/u2ddj

=
8Îp

15
u. s48d

Now (46) can be approximated by

] A

] X1
= −

Î2pl

5
A2. s49d

Therefore for largeX1, A decays algebraically,

AsX1d <
5

Î2pl

1

X1
as X1 @ 1. s50d

Thus, unlike sinusoidal waves in simple linear systems, a
soliton, which is a transient nonlinear pulse, decays algebra-
ically.

Subject to the initial conditionAs0d=1, (46) can be solved
numerically by standard routines. The numerical solution of
(46) for different correlation lengthl is plotted in Fig. 2. For
a random bed with short correlation length, attenuation oc-
curs in a relatively long distance.

By employing a spectral method described in Appendix
B, (38) has been solved numerically for several small values
of D2. In Fig. 3 the computed amplitude attenuation is com-
pared with the approximate prediction here. For the smallest
D2=0.05, the agreement is excellent. AsD2 increases to
moderate values of 0.25 and 0.5, the fully numerical solution
attenuates somewhat faster at smallX1 and then slower at
largeX1.

FIG. 1. FunctionFsud in (47). Solid line, Fsud; dashed line,
(48).

FIG. 2. Spatial decay of soliton amplitude. The solid curves
correspond to a correlation length ofl =0.25,0.5,1.0,2.0 from the
top down. The dashed curves are calculated from(50).

EVOLUTION OF SOLITONS OVER A RANDOMLY ROUGH… PHYSICAL REVIEW E 70, 016302(2004)

016302-5



V. ASYMPTOTIC BEHAVIOR FOR LONG TRAVEL
DISTANCE

After traveling a long distance, the soliton is reduced and
the profile flattened. Therefore, the dimensionless local char-
acteristic wave numberKsXd!1 for large X. Because of
mass conservation, the local wave amplitudeAsXd decays at
the same rate ofKsXd. In (38), the diffusion and dispersion
terms can be compared to the inertia term as follows:

]3z

] s3Y z
] z

] s
,

K2sXd
AsXd

, OsKsXdd ! 1,

]2z

] s2Y z
] z

] s
,

KsXd
AsXd

, Os1d,

i.e., dispersion is negligible compared with nonlinearity and
dissipation. Since at largeX the length scale ofz is much
greater than the initial soliton length which is comparable to
the correlation lengthl of disorder, the third term on the
right-hand side of(38) can be approximated by

1

16
E

−`

`

expS−
us − s8u2

8l2
D ]2z

] s82ds8 <
1

16

]2z

] s2E
−`

`

3expS−
s82

8l2
Dds8 =

Î2pl

8

]2z

] s2 . s51d

Hence, the asymptotic form of(38) for X@1 reduces to

] z

] X
+

3

2
z

] z

] s
=

D2

2

] z

] s
+

Î2pD2l

4

]2z

] s2 . s52d

We now change to a new reference frame moving at the
speed −D2/2 with respect to thes system, and introduce

r = s +
D2X

2
. s53d

Equation(52) becomes Burgers’ equation

] z

] X
+

3

2
z

] z

] r
=

Î2pD2l

4

]2z

] r2 s54d

for which an initial-value problem has been solved analyti-
cally by Cole and Hopf. It can be expected that at largeX,

the asymptotic profile of our soliton should approach that of
the Cole-Hopf solution for the initial datazsr ,0d
=s4/Î3ddsrd which has the same area of 4/Î3 as our initial
soliton (see(44) with A=1), namely,

z < SÎ2pD2l

X
D1/21

3
Fsr8d, X @ 1 s55d

(see[36]), where

Fsr8d =
N
Îp

e−r82

1 +
N

2
erfc r8

s56d

with

r8 =
r

sÎ2pD2lXd1/2
s57d

and

N = expSÎ24

p

1

D2l
D − 1, s58d

for any degree of disorderD2l. Thus for large X, the
asymptotic profile of(55) is a bell-shaped crest with a
steeper front moving in the coordinates at the negative
speedD2/2. The crest attenuates in height as 1/ÎX and ex-
pands in width asÎX, so that the total area is conserved. It is
easy to see that the total energy in the pulse decays at the rate
of 1/ÎX.

For largeD2l, i.e., strong disorder,

N <Î24

p

1

D2l
! 1 s59d

and (55) can be approximated by

z <
4

Î3p
S 1

Î2pD2lX
D1/2

e−sr2/Î2pD2lXd. s60d

Nonlinearity is overwhelmed by diffusion.
Let us define the normalized attenuation lengthL to be the

distance over which the maximum wave height decreases to
some small fraction(say, 1/10) of its initial value

AsX = Ld =
1

10
AsX = 0d =

1

10
. s61d

For smallD2l, L can be estimated by(50), i.e.,

L <
50

Î2pD2l
. s62d

For intermediateD2l =Os1d, we use(58) to get

1

10
=

1

3
SÎ2pD2l

L
D1/2

maxsFd. s63d

It is straightforward to find maxsFd=2r08 which occurs when
r8=r08 is the solution of the transcendental equation

FIG. 3. Comparison of the approximate solution by(46) and
numerical solution of the soliton amplitude decay,l =1.
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r8s2 + N erfc r8d =
N
Îp

e−r82
s64d

and depends onD2l through(58). It then follows that

L <
400Î2pD2l

9
r08

2. s65d

Equation(65) holds also for largeD2l. A more explicit
expression can be had by using the limit(60),

L <
1600

3pÎ2pD2l
. s66d

In Fig. 4 the attenuation length is shown by three approxi-
mations according to(62), (65), and(66) for different range
of D2l. These results agree well with the direct numerical
computations as described in the next section. Clearly higher
roughness and/or larger correlation length lead to faster at-
tenuation.

We now discuss numerical solutions to the nonlinear
integro-differential equation(38) for two initial-value prob-
lems obtained by a spectral method described in Appendix B.

VI. TRANSFORMATION OF A SOLITON OVER A LONG
ROUGH SEABED

We first discuss the evolution of a soliton over the total
distance of 0øXø100 covered by roughness of givenD and
l. Two seabeds with low-amplitude roughnesses are first cho-
sen for the same correlation length ofl =1. The numerical
solutions are shown in Figs. 5(a) and 5(b). As X increases,
the wave profiles flatten gradually withX. For the lower
roughness, the wave crest first travels forward in the moving
coordinate, therefore faster than the linear phase speed over a
smooth bed(1 in dimensionless form orÎgH in physical
dimensions, in the stationary frame of reference). As the
crest loses its height withX, it also slows down to below the
linear phase speed. By comparing Figs. 5(a) and 5(b), the
soliton is slowed down sooner by the bed with higher rough-
ness. For largeX, the asymptotic profile is described by(55).

With still higher roughness, solitons are further slowed, as
shown in Figs. 5(c) and 5(d). For D2=0.5, the forward push
by inertia loses more ground to retardation by roughness, see

Fig. 5(c). For the highest roughness withD2=1.0 [see Fig.
5(d)], inertia is overpowered by roughness and nonlinearity
is no longer effective. The wave crest always travels at a
speed lower than the linear wave speed for a smooth bed.

As a largerl corresponds also to stronger disorder, stron-
ger dissipation and faster attenuation are expected, and are
confirmed by Figs. 6(a) and 6(b) for the sameD2=0.1. If the
seabed roughness is higher, the effect of correlation length is
more important, as seen in Figs. 7(a) and 7(b).

VII. SOLITON FISSION AFTER PASSING A RANDOM
STRIP

Across a linear random medium, a sinusoidal wave train
loses its amplitude. After crossing a finite strip of disorder,
the transmitted wave diminishes exponentially with the strip
width, but remains sinusoidal. For the nonlinear dispersive
system here, it is interesting to see whether the much flat-
tened, transmitted pulse, which is no longer a soliton, may
lead to fission of new solitons.

Let us consider the evolution of a transient pulse, after it
emerges from a random strip of lengthX0. The computed

FIG. 4. Attenuation length by approximate formulas and nu-
merical computation.

FIG. 5. Effects of roughness amplitude on soliton evolution over
a random seabed. The total travel distance is 100s0øXø100d.
Wave profiles are shown at everyDX=10. l =1, (a). D2=0.10, (b).
D2=0.25,(c). D2=0.50; (d). D2=1.0.
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zss ,X0d is used as the initial data to compute the subsequent
evolution ofzss ,Xd for X.X0 from the classical KdV equa-
tion. By dropping the right-hand side of(38) and using the
transformation,

z → − z̄, s → S2

3
D1/2

s̄X − X0 → 6S2

3
D3/2

t s67d

we reduce(38) with D2=0 to the canonical form

z̄t − 6z̄ z̄s̄ + z̄s̄s̄s̄ = 0. s68d

According to the inverse scattering theory of Gardneret al.

[37], an initial profile z̄ss̄ ,0d can disintegrate into a number
of new solitons if real negative eigenvalues can be found

from the following Schrödinger equation withz̄ss̄ ,0d as the
potential:

−
]2c

] x2 + z̄ss̄,0dc = lc. s69d

The number of solitons is equal to the number of eigenvalues
l, roughly given byÎA0L, whereA0 is the height andL the

width of the initial pulsez̄ss̄ ,0d.
For the fixed correlation lengthl =1, we have first com-

puted the soliton evolution over rough beds of different mean
square heightsD2 and widthsX0. For each set ofsD ,X0d the
final profile atX0 is used as the initial data to compute the
subsequent fission by solving the usual KdV equation(40).
Typical long-time evolutions are shown in Figs. 8–11. Fis-
sion into two, three, four, and five separate pulses, after a
soliton escapes a finite random bed with the total extentX0
=5, 20, 30, and 50, can be seen. The tallest pulses are essen-
tially solitons.

From many numerical solutions of the eigenvalue prob-
lems governed by(69), the number of disintegrated soliton-
like pulses is displayed in the plane ofD2 and X0, all for l
=1. The thresholds of fission are found to be hyperbolas
D2X0=constant, as shown in Fig. 12. Thus more solitons of
diminishing amplitudes emerge after transmission if either
D2 or X0 is larger.

We first examine why the number of solitons increases
monotonically withD2X0. Recall from Sec. V that after trav-
eling a distanceX0 over a random bed a soliton flattens by
diffusion to a pulse of height proportional tosD2lX0d−1/2 and
length proportional tosD2lX0d1/2. Their product, which deter-
mines the number of eigenvalues and the number of solitons
in the inverse scattering theory, is

sheightd 3 slengthd2 ~ sD2lX0d1/2. s70d

Hence it is the flattening effect of diffusion that leads to the
proliferation of solitons with increasingD2lX0, as found nu-
merically.

FIG. 9. Fission of solitonlike pulses after a soliton passes a finite
strip of random seabed.l =1.0,X0=20,D2=1.0. The last profile is at
X−X0=900.

FIG. 6. Effects of correlation length on soliton evolution over a
random seabed. The total distance of travel is 100s0øXø100d.
Wave profiles are shown at everyDX=10. D2=0.10,(a) l =0.5; (b)
l =2.0.

FIG. 7. Effects of correlation length on soliton evolution over a
random seabed. The total distance of travel is 100s0øXø100d.
Wave profiles are shown at everyDX=10. D2=0.50,(a) l =0.5; (b)
l =2.0.

FIG. 8. Fission of solitonlike pulses after a soliton passes a finite
strip of random seabed.l =1.0,X0=5, D2=0.25. The last profile is at
X−X0=300.
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Next, we point out that the proliferation of vanishingly
small solitons is of little dynamical consequence since they
are geometrical forms of negligible energy. As seen from
(44), the classical soliton of any dimensionless amplitudeA0,
has the dimensionless wavelength 1/K where K=Î3A0/4.
Although the corresponding ratio of nonlinearity to disper-
sion (Ursell parameter) A0/K2=4/3 isindependent ofA0, the
total energy of a soliton is proportional to

E
−`

`

z2ds = A0
2E

−`

`

sech4Î3A0

4
sds = S3A0

4
D3/2

. s71d

Therefore, a soliton of vanishingly small amplitude has van-
ishingly small energy. In conclusion, past a longer or more
disordered rough bed, a soliton becomes a flatter pulse after
transmission, and procreates a larger number of solitons of
vanishingly small amplitude and energy.

VIII. CONCLUDING REMARKS

For long waves over a randomly rough seabed, we have
studied the accumulated effects of multiple scattering by dis-
ordered irregularities on the seabed. In addition to the usual
assumptions of KdV approximation that nonlinearity is com-
parable to dispersion, we assume that the ratio of random-
ness height to mean depth is comparable to that of mean
depth to the characteristic wavelength. Disorder is shown to
cause diffusion, which leads to spatial attenuation of ampli-
tude, flattening of profile, slowing down of wave advance,
and reduction of dispersion. After a large region of random
scattering, dispersion loses ground to diffusion, while non-
linearity can still remain. Unlike sinusoidal waves in linear
cases, attenuation with distance is algebraic rather than ex-
ponential. If the random region is finite in length, the trans-
mitted wave is a flattened pulse which disintegrates into

many small and flat solitons of vanishing energy.
Similar analyses of problems in geophysical fluid dynam-

ics such as internal waves, and in fiber optics, should be of
considerable scientific and engineering interest.
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APPENDIX A: DETAILS OF RANDOM FORCING

In terms of the Fourier transform, we can write

] z

] x8
=

1

2p
E

−`

`

ikeiksx8−x−st8−tddẑsk,Xdeiksx−tddk

=
1

2p
E

−`

`

ikeikje−iktẑsk,Xdeiksx−tddk, sA1d

where

j = x8 − x, t = t8 − t.

Note that

] G

] x
=

] G

] uju
sgnsjd = −

1

2
dst − ujudsgnsjd. sA2d

Using these results in(18), we get, after simple variable
transformations, that

−Kbsxd
] h1

] x
L =

1

4p
E E E

−`

`

dtdjdkeiksx−tdik
]

] j

3fGsjdẑskde−ikjgeiktdst − ujudsgnsjd.

Since

E
−`

`

dteiktdst − ujud = eikuju

the triple integral above becomes

FIG. 10. Fission of solitonlike pulses after a soliton passes a
finite strip of random seabed.l =1.0,X0=30, D2=1.5. The last pro-
file is at X−X0=1400.

FIG. 11. Fission of solitonlike pulses after a soliton passes a
finite strip of random seabed.l =1.0,X0=50, D2=2.5. The last pro-
file is at X−X0=3000.

FIG. 12. Number of disintegrating solitons after a finite random
seabed.l =1.0.
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−Kbsxd
] h1

] x
L =

1

2p
E E

−`

`

djdkeiksx−tdẑskd
ik

2

]

] j

3fGsj,Xde−ikjgeikuju sgnsjd,

which gives(20) after using the definition(21).

APPENDIX B: NUMERICAL METHOD FOR SOLVING
EQ. (38)

We choose a computational domainf0,s,Lg and im-
pose periodic boundary conditions at both ends. The domain
must be large enough so that there no wave disturbance
reaches either end during computation. We first scale the
spacelike variables so that the computational domain is 2p

j = KLs =
2p

L
s. sB1d

The governing equation(38) is rewritten as

] z

] X
+

3KL

2
z
] z

] j
+

KL
3

6

]3z

] j3 = D2HKL

2

] z

] j
+

Î2plKL
2

8

]2z

] j2

+
KL

16
E

−`

` ]2z

] j82

3expS−
sj − j8d2

8KL
2l2

Ddj8

+
Î2pKL

2l

16
E

−`

` ]3z

] j83

3erfcS uj − j8u

2Î2KLl
Ddj8J . sB2d

The displacementz at uniformly spaced nodes is then
represented by a discrete Fourier series

zsj jd = o
m=−N/2+1

N/2

ẑmeimj j , sB3d

wherej j =2p j /N.

The discrete Fourier transform of(B2) is

] ẑm

] X
= GsmKLdẑm −

3imKL

4
Fmsz2d, sB4d

where Fm denotes themth component of discrete Fourier
transform and

Gskd = −
Î2p

8
k2D2ls1 + e−2k2l2d + ik

D2

2
+ ik3S1

6

−
D2l2

2

Îpe−2k2l2 erfisÎ2kld
2Î2kl

D . sB5d

The fourth order Runge-Kutta method is used to solve
(B4) numerically:

ẑm
n+1 = ẑm

n +
Dt

6
sẑk1,m + 2ẑk2,m + 2ẑk3,m + ẑk4,md, sB6d

where

ẑk1,m = GsmKLdẑm
n −

3imKL

4
Fmssznd2d, sB7d

ẑk2,m = GsmKLdSẑm
n +

Dt

2
ẑk1,mD −

3imKL

4
FmSSz +

Dt

2
zk1D2D ,

sB8d

ẑk3,m = GsmKLdSẑm
n +

Dt

2
ẑk2,mD −

3imKL

4
FmSSz +

Dt

2
zk2D2D ,

sB9d

ẑk4,m = GsmKLdsẑm
n + Dtẑk3,md −

3imKL

4
Fmssz + Dtzk3d2d.

sB10d
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