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Evolution of solitons over a randomly rough seabed
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For long waves propagating over a randomly uneven seabed, we derive a modified Korteweg-de Vries
(KdV) equation including new terms representing the effects of disorder on amplitude attenuation and wave
phase. Analytical and numerical results are described for the evolution of a soliton entering a semi-infinite
region of disorder, and the fission of new solitons after passing over a finite region of disorder.
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I. INTRODUCTION been examined39]. Further asymptotic results for steep

Attenuation due to multiple scattering of waves by ran-roughness have been discussed recently by Nad&@inIn
dom irregularities can be of importance in a variety of sci-a recent note Fouguet al. [23] considered time-reversal of
entific and technological endeavaisee, e.g[1]). After the  linear dispersive and nonlinear hyperbolic waves due to
seminal work by Andersof2] in condensed-matter physics, weak disorder, as two limits of Boussinesq system.
tools of modern theoretical physics have been applied to lin- In coastal seas, the bathymetric roughness extending over
ear wave problems in many branches of classical physics, darge areas is often gentle in local slope and small in ampli-
summarized by Shenig,4]. Mathematical treatments of lin- tude. Using the multiple-scales method, Kawah@4 has
ear waves such as sound and electromagnetic waves can therived evolution equations for unidirectional water waves
found in [5—8]. In recent years, nonlinear waves in weakly of both long and intermediate wavelength relative to the
random media have also received considerable attention idepth, without however analyzing the physics. Pertinent ap-
the literature of mathematical physics. Some authors havproximations for certain model wave equations have been
studied the effects of prescribed random forc[@) Many treated by Benilov and PelinofskiR5]. Recently Mei and
others have treated the effects of a random pote(didérm  associates have studied two- and three-dimensional problems
linear or nonlinear in the unknown and/or its derivatives,for narrow-banded Stokes waves of intermediate
with a random coefficientwhen added to a classical evolu- wavelength-to-depth ratio. Similar {@4] but different from
tion equation(KdV, nonlinear Schrodinger or Sine-Gordon [19], both the local height and length of the bed roughness
Extensive surveys of soliton dynamics under random perturare assumed to be comparable respectively to the wave am-
bations have been given if10-13. Further contributions plitude and wavelength. For unidirectional waves over the
include the works by Devillard and Souillafd 3], Garnier  one-dimensional random seabed, the effects on sideband in-
[14,15 and many others. stability and the scattering of soliton envelopes have been

In the linear theory of classical waves, the main physicainvestigated[26]. For several two-dimensional regions of
consequence of disorder is the spatial attenuation due to mulandom bathymetry, the diffraction and attenuation of Stokes
tiple scattering, a phenomenon related to Anderson localizavaves have been investigatg2i7]. In particular, dark soli-
tion [2] in quantum systems. The effect is undoubtedly oftons are found in the wake of an elongated area. For long
importance in many physical contexts, for example, in fibemperiodic waves in shallow water, harmonic generation is
optics where electromagnetic signals must travel hundreds dfnown to prevail over a smooth bgé8,29. Assuming the
kilometers over which random material inhomogeneitiesroughness height to be smaller than the mean depth by a
must exist. It is equally important in coastal oceanographyactor of orderKH <1, and the roughness length scale to be
where bathymetric irregularities contribute to sea wave atecomparable to the wavelength, the influence of disorder on
tenuation by wave radiation, in addition to other dissipativeharmonic generation has been studied by Grataloup and Mei
mechanisms by surface-wave breaking, internal and bottorf80]. It is found that the amplitudes of the fundamental and
friction, etc. Earliest theories on sea waves over disorderetligher harmonics are governed by coupled nonlinear equa-
seabed are due to Hasselmdm®] and Long[17] who em- tions similar to those in optid81], but with additional terms
ployed the technique of Feynman diagrams. More recent linwhose complex coefficients are deterministic and related to
ear theories are represented [4y8] and [19]. Considering certain correlation functions of disorder.
nonlinearity, Rosales and Papanicold@0] examined soli- In this paper we examine the transient propagation of a
tons over relatively short and steep bottom roughribsgh  soliton over a shallow water with a weakly random bathym-
height and length are comparable to the typical water depthetry. The scale assumptions are the same as thd&djiand
and found that the randomness affects the wave speed. Withrataloup and Me{30], but different from[20-23. After
similar assumptions on the length scales, Nachbin and Solnderiving the asymptotic equation, we shall examine, both
[21] studied wave scattering by bottom disorder. For thesanalytically and numerically, how incoherent multiple scat-
steep roughnesses, both forward and reflected waves atering affects the phase and the amplitude of the coherent
comparable; the coupling of their spectral amplitudes hasvave at the leading order.
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. ASYMPTOTIC EQUATION FOR UNIDIRECTIONAL
WAVES

We begin with the well-known Boussinesq equations for
long waves in shallow water. In physical dimensions, the

horizontal and vertical coordinate are denotedkby”, time
by t", the depth-averaged velocity hy, the free surface
displacement byy’, the constant mean depth bj; and the

depth variations bp’. Let K™! be the characteristic horizon-
tal length anda the characteristic wave amplitude, we as-
sume thab’/H=0(KH) <1, and introduce normalized vari-

ables(without primes as follows:

*

* 4 o
x=Kx, z=—, t=KygHt,
H

u* 7]* b*
u= , =—, b=—. 1
E ',_H K a KH2 ( )

'Y
Under the assumptions
a 2

e=ﬁ<1, nw=KH<1, and e=0O(u), (2)

the Boussinesq approximation for mass and momentum con-

servation are, to the first order inand u?,

Jdn J

—+—[(1-ub+enu]=0 3

ol ub+ enul 3
and

au du dn wp? du

et 4= (4)

at IX dX 3&x at’

We assume that the depth fluctuatioix) is a stationary and
random function ok, with zero mean.
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a 1/2
so thate=u?.

We shall now derive the statistical average(f. In an-
ticipation that the small disorder affects the leading order
after a long distance inversely proportional to the mean
square of the disorder, we introduce two space variables
and X=pu?x and expandi and z as power series qf:

()

7%, X;t) = 70+ gy + uP i+ O(1), (8)
u(x,X;t) = Up + uuy + p2uy + O(d). (9
The perturbation equations are easily found to be
Py P
ZR_TMo, (10
at ax
Fm_Pm__ 9 (b( AL 7/0) D
a2 ax?
2 2
(9_7722_(92_7/22___(b( )0771) 100 Fno s & (u(2)+@)
at ax ax aX IXIX  IX? 2
14
LR/ (12)
3%

At the leading orderD(1), the governing wave equation
(10) is homogeneous and deterministic; the solution must
represent coherent waves. We limit ourselves to a right-going
wave with vanishing amplitude &t~ —oo,

70X, X;1) = Ug(X, X; 1) = {(X; 0), (13

where o=x-t. The explicit dependence ax and o is yet
undetermined.

At the first orderO(u), the inhomogeneous equati@hl)
has random forcing, and can be solved by using the follow-

Within the stated accuracy, the preceding two equationéng well-known Green’s functiotie.g.,[32])

can be combined to give the stochastic differential equation,

Py F d d & 2 25
7] 77 _/.L (b(x)_,r’)_'_e_z(uz_i_ l)+M__Z
JX ax aX 2 39X

5

at? 9x?

Our objective is to study the evolution of a soliton after

entering a rough bed in the region £ 0. In the region of

smooth bedx<0 whereb=0, the incident soliton is known

to be described by

* “"5 a 1/2 * *
7 (xt=a secﬁ%<m> (x' = Ct),

with

(6)

G(x,t;x,t') = sH[(t—t") = [x=x'[], (14)

whereH(2z) is the Heaviside step function. The formal solu-
tion is

t © J
X, X;t) = - dt’ dx' G(x,t;x',t")—
7( ) f_w f_w ( )5)(,

X(b(x,)w>_ (15)

dX
Clearly n;, represents the incoherently scattered wave and is
random with zero mean.
We now take the ensemble averagg 1), and obtain

(72<7]2>_f92<772>:_ J b()<9m 325 30"252
at? Ix? X axax 2 9%
1a4§
+§o7_X4 (16)

It is convenient to choose the wavelength of the incident

soliton as the horizontal scale K/i.e.,

By virtue of (13), the last three terms are all functions ®f

016302-2



EVOLUTION OF SOLITONS OVER A RANDOMLY ROUGH.. PHYSICAL REVIEW E 70, 016302(2004)

=x-t, hence are homogeneous solutions of the averaged Equation(23) can be brought to a more explicit form as
wave equation. Together they can be transformed to follows. From(21), we obtain by partial integration,

PL 3a2g2 14¢
daaX 2(902 390"

an  p=lpr@e sroen -t | (et

We now examine the first forcing term by usi , 2 (% L
) ) ? Y usit) :—ik?“% f I'(eekéekdlde, (24)
<—b(x)ﬂ>=f dt’f dx’ -
dx —oo - where
9 98 [4GX L) d ikl — i1 eiklé]
><L)(,((b(X)b(X %x’)} P . dg(sgrtg)e ) =ikée (25)

(18) is used. Since the integrand in the last integral is eveg in
By assuming the disorder to be homogeneous in the shol® find

scale, the autocorrelation of depth fluctuations is e o 1~ e
f I(&)ekéeMdde == f r(Hde + f I'(&)cos Xédé
(b(x)b(x"))=T(§ =T'(X' = x) (19 — 2) 0
which will be assumed to be a positive and even function of " ) 1.
£=x'-x. It is shown in Appendix A that +l . [(§sin xedé= EF(O)
dm ik(x-t) 1. s
—b()—" B(k X)Z(X; ke Vdk,  (20) +51(2K) +ikP(2K), (26)
whereZ is the Fourier transform of, where the third term is obtained after partial integration, with
P(¢) being defined by
{(k,X) = f L =t X)e K0 gy, “
P(¢) = I'(u)du. (27)

lél

and B(k, X) is the complex coefficient defined by ) )
Hencepg in (24) can be rewritten as

— K N . ik ik -~ -~ ~
A= J_ﬂ S TEX09sgrgeias. (2 B=- ik@ ¥ kz{%F(O) + %F(Zk) + ikp(zk)}. 28
In view of (20), we get Substituting(28) into (23), we get, after invoking the con-
< J 771> 19 (* . . volution theorem,
b(x) —f 7Bk, X)¢(k, X)dk.
mIo) ag 3 ag 1% F(O)ag F(O) FL
(22) X 2%90 6060 2 g0 8 dd?
Thus all forcing terms on the right afl6) are function of . 1 (- F( ) s .
o=x-t. To avoid unbounded resonance foy,), their sum 16)_, 2 Jdo'?
must vanish. After integrating this solvability condition with . ,
respect tar, we obtain the asymptotic equation for the lead- + }f P( oo )ﬁda'
ing order displacement, as seen by an observer traveling at 8J_. 2 Jao'®
the linear phase spegtieing unity in dimensionless form
and VgH in physical scalg during a very long course of (29)
propagation, This equation can be reduced to the one found earlig24h
o We find the form here more convenient for physical interpre-
¢ 3§‘9§ 1 ‘?35 if Bk, X)Z(k, X)ekodk. tation and for further approximate analysis. Physically the
IX 2°90 6d0° ' ' coherent part of the wave which dominates the leading order

(23) is affected by disorder only on the average, through new
terms on the right-hand side of the extended KdV equation.
This is just a KdV equation modified by the additional term In particular, the first term on the right-hand side represents
on the right-hand side representing the scattering effect afeduction of the phase velocity. Becaukg&) is positive-
disorder. The timelike coordinat® represents the distance definite, dispersion is also reduced through the fourth term.
traveled by the wave. Different from many existing theoriesin addition, the second and third terms are of Burgers’ form
based on various models of random potentials, this new terrand signify diffusion, hence would lead to spatial attenua-
is deterministic. tion. These effects of disorder have been noteflBj.
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One of the physical implications of the new terms above ) 2
can be found at once by studying the energy of the coherent erfi(z)=—= [ edt (37)
wave. Multiplying both sides of23) and integrating the re- N0
sult with respect tar, we get Consequently29) becomes
® 2 1 f“’ ~ ¢, 8.9¢ 1 s

— —d =—— k)|Z(k)|~dk.

dX o 27) ., A1k X 2§00' 650’
Since¢(o) is real in allo, its Fourier transforni(k) and its -pl 19¢ . \’27T| ‘925 f p( o - ‘T’|2>
complex conjugate must satisfj—k)=¢" (k). By the fact that 200" 8 90 16 8I?

Re(B(k)) is even and IB(k)) is odd ink, it follows that

d 2 \ o _
1 w A ><—j é,Vzda i;ﬂf erfc('g2 E(TI |)ﬁ(i€3d }
f Zdo= f Re(B(K)[E(K[2dk.  (30) - K
dX —% m™Jo (38)

From (28), Re(B(k))>0 for all positivek. The right-hand  The effect of disorder, represented by the right-hand side, is
side of (30) is negative. Physically, energy is drained from proportional to the mean-square height of the bed roughness.
the coherent wave for the radiation of the much smallerBefore discussing numerical solutions for finite value©éf
randomly scattered incoherent waves, leading to spatial atve examine two limiting cases analytically.

tenuation of7,. We point out that the attenuation of sinu-

soidal waves of infinitesimal amplitude is characterized by V- ROUGH BED WITH A SMALL MEAN-SQUARE
exponential reduction of the transmission waves with the to- HEIGHT

tal extent of disorder. It is known that for some nonlinear  pamping of solitons by weak viscous dissipation in the

waves, spatial attenuation can also be alget®s§ as will  pottom boundary layer has been studied be{8&34. We

be the case here. follow the method iN34] (as described ifi35]) and consider

Ill. GAUSSIAN CORRELATION EUNCTION a case of small me?n—square he@%& O(1). Introducing a

slow variableX;=D“X and expand into a power series of
For better insight we choose the correlation function to beD?,

Gaussian, with the correlation length taken td'bel /K. The

dimensional correlation function is,

£= 09X Xg;0) + DXIY(X,Xy;0) +O(D*)  (39)

we get from(38) the perturbation equations

(b’ (x)b"(x"")) =D exp<( o2 ) (31) ¢ g(())ﬁﬁo 1509

X 2 69055 40
whereD" is the root-mean-square amplitude of the random J Jo J
roughness. The normalized correlation function is
g , 9 §(l g (9 g(l) (9 g(o) 1 (93§ (9 §<O) . }(9 4(0)
F(§)=DZeX[<—§—2>, (32) axX 2 do 2 do 6(90 T 9Xy 240
2 2 40 2 2
\'27T|o’?§<) f PO _(o-0d) )d ,
where 8 902 do'? 8l? 7
D?1 D
D?=—==——=0(1). (33) Voml (= PO [lo-o|
H u aH + zerfc = |do’ (. (41)
16 J . do 22
It follows that _
A _ 22 Denoting
I'(k) = V27D2 exp(— 7) (34) p=o-c(X)X (42)
and (40) can be transformed to
d 3 1 &
- 2 erid 14 e+ {0+ 21 09=0. (43
P(¢) = I'(uydu= 2 D4l erfc o) (35) ap 4 6dp
v
4 The solution forZ© is the well-known soliton
where erf¢z) is the complementary error function. " A
The Fourier transform oP(¢) is (0= secﬁ{ /Z<U_ EX)] (44)
“ \27D3? K3 { Kl
P(k) = LAY erfi ) (36)  where the local phase speedX;)=A/2 and local wave-
v length v4/3A vary slowly with X; through the local ampli-
where erf{z) is the imaginary error function defined by tude A(X;), whose initial value iA(0)=1.
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Using the transformationi42), the linear equation(41) 06
can be written as osl /I
p 14 y
—{—c+ g°>+——}g<1 RHS41).  (45) Sl
Ip R 03

Now the differential operators @#3) and(45) are adjoint to

each other. By applying Green’s identity, we obtain the solv- 02
ability condition, 0.1}
(9 0 1(9 (0) o " " " "
J gO)RHS(4l) J dpg g( _L 0 1 2 3 4 5
\27T| (92440) o &250) FIG. 1. FunctionF(u) in (47). Solid line, F(u); dashed line,
+— > (48).
8 dp> 16J)_, dp'
(p- p’)2> IA 2l
xXexp — dp’ I eV
82 )" a5 A (49)
V2l f‘” PO [lp=p']
+ erfc — |dp’ .
16 J)_, ap'® 2421 Therefore for largex,, A decays algebraically,
=0.
) . 5 1
In the curly braces, the second and fifth term do not contrib- A(Xy) = =y @as X;> 1. (50)
ute to the integral due to their oddnesspinTherefore, we V2l Xq
obtain after integration by parts,
19 (* ol (* (9702 Thus, unlike sinusoidal waves in simple linear systems, a
-2 02, - ij (L) o soliton, which is a transient nonlinear pulse, decays algebra-
20X1) 8 J..\dp ically.
Subject to the initial conditioA(0)=1, (46) can be solved
+ —J d §<0>f '[(P p >2/8'2]d =0 numerically by standard routines. The numerical solution of

(46) for different correlation length is plotted in Fig. 2. For
a random bed with short correlation length, attenuation oc-
curs in a relatively long distance.

By employing a spectral method described in Appendix
B, (38) has been solved numerically for several small values

which yields finally an ordinary differential equation for the
soliton amplitudeA(X;)

—
I9A __ V2l A2 \3A3’2F( CINGY (46) of D?. In Fig. 3 the computed amplitude attenuation is com-
aXq 10 16 pared with the approximate prediction here. For the smallest

) , D?=0.05, the agreement is excellent. &A% increases to
whereF is defined by moderate values of 0.25 and 0.5, the fully numerical solution
o o attenuates somewhat faster at sm¥lland then slower at
F(u) = ZJ dpseck p| (3sechq large X;.
0 0
— 2 secR g) - (el P#P) 4 grla+ Pl g !
(47) 038
which is plotted in Fig. 1. = 06
At large X;>1, A(X;) becomes small. Then the second <
integral in (47) is dominated by contributions neay=p, 04
henceF(u) can be approximated for small argument by
02
F(u) = Zf sech p(3 sech p- 2)dpj GLERY: 0 ; >
0 - (] 20 40 60 80 100
X4
8\ 77
- 15 (48) FIG. 2. Spatial decay of soliton amplitude. The solid curves
correspond to a correlation length l6f0.25,0.5,1.0,2.0 from the
Now (46) can be approximated by top down. The dashed curves are calculated f(60).
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1 " " " e the asymptotic profile of our soliton should approach that of
o D2)= 0.05 the Cole-Hopf solution for the initial datal(p,0)
o8 + D?=0.25] =(4/13)8(p) which has the same area of & as our initial
go.e = D?= 0'50_ soliton (see(44) with A=1), namely,
<

V27D )1’21
SFp), X>1 55
( X 3 (p") (55)

L 2
02 "'""uu"uauu"uu"a (see[36]), where
0 N N " " N _ 12
N e’
o 10 20 3%1 40 50 60 Flp')=F=—— (56)

Y71+ —erfc p’
FIG. 3. Comparison of the approximate solution (#6) and 2
numerical solution of the soliton amplitude decky,1.

with
V. ASYMPTOTIC BEHAVIOR FOR LONG TRAVEL , p 57
DISTANCE P (V22D 2 (57)
After traveling a long distance, the soliton is reduced and d
the profile flattened. Therefore, the dimensionless local cha"
acteristic wave numbeK(X)<1 for large X. Because of 24 1
mass conservation, the local wave amplitédX) decays at N= exp< \/:ﬁ) -1, (58
the same rate oK(X). In (38), the diffusion and dispersion ™
terms can be compared to the inertia term as follows: for any degree of disordeD?. Thus for large X, the
At 9 KAX) asymptotic profile_of(55) is a beII_—shaped crest Wit_h a
— — ~ ——~ ~ O(K(X)) <1, steeper front moving in the coordinate at the negative
do do  AX) speedD?/2. The crest attenuates in height as/X/and ex-
pands in width ag'X, so that the total area is conserved. It is
ﬁ g _ @ ~o(1) easy to see that the total energy in the pulse decays at the rate
do? g&a A(X) ’ of 1/VX.
. . o o . o For largeD?, i.e., strong disorder,
i.e., dispersion is negligible compared with nonlinearity and
dissipation. Since at larg¥ the length scale of is much 24 1
greater than the initial soliton length which is comparable to N~ DA <1 (59
the correlation lengthH of disorder, the third term on the
right-hand side of38) can be approximated by and(55) can be approximated by
% —'|? % 12
if ex%_ |0— (2)- | ) &Z{Zdo./ ~ iﬁ 5“ ’i_( ’_1 ) e—(p2/\527TD2|X). (60)
16 _., 8l do 1600°)_, V37 \\27DAX
o2\ 2wl L Nonlinearity is overwhelmed by diffusion.
Xexp ~ g2 do’ = 8 902 (51) Let us define the normalized attenuation lengtio be the
distance over which the maximum wave height decreases to
Hence, the asymptotic form ¢88) for X>1 reduces to some small fractiorisay, 1/10 of its initial value
d{ 3. 9¢ D23¢ \2mDA #¢ 1 1
X 290" 200 4 a2 P AX=L)= [ AX=0)= 1o (61

We now change to a new reference frame moving at the For smallD2, L can be estimated b§50), i.e.,
speed D?/2 with respect to ther system, and introduce
50

DX L~ ——. 62
p=o+ EE (53 V2D (62
. o
Equation(52) becomes Burgers’ equation For intermediated™ =0(1), we use(58) to get
o2 1 1 2nD?\¥2
5_§+§ a_gz\zLDlaz_gz (54) EZE( ) max(f) (63)
axX 27dp 4  Jp L

for which an initial-value problem has been solved analyti-It is straightforward to find ma@#) =2p, which occurs when
cally by Cole and Hopf. It can be expected that at laxge p’=pg is the solution of the transcendental equation
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15007 1
-Ll ‘= (62) 08}
|l| — (65) 06
N - - (66
1000 o fmn)u.z=1 1 Yo
= o 0
t
500[! \ . -60
(A
) \\ b |
\:“.‘:"\*... 08
0 Y .y oo S 06
0 05 1 1.5 2 :
D% 04
02
FIG. 4. Attenuation length by approximate formulas and nu- 0
merical computation.
-60
N _ 12 1
p'(2+Nerfcp')=—e" (64) 08}
Nk 06
and depends oB? through(58). It then follows that ~ g:
40027DA | 0
L~ ——pp. (65) ; : ; ;
9 -60 -40 -20 ] 20
Equation(65) holds also for largeD?. A more explicit
expression can be had by using the lit@i0),
1600
L~——- (66)
3m\27DAl
In Fig. 4 the attenuation length is shown by three approxi-

mations according t662), (65), and(66) for different range -60 -40 -20 o 20
of D?. These results agree well with the direct numerical o)
computations as described in the next section. Clearly higher

roughness and/or larger correlation length lead to faster at- FIG. 5. Effects of roughness amplitude on soliton evolution over
tenuation a random seabed. The total travel distance is(A80X<100).

. _ — 2
We now discuss numerical solutions to the nonlinearW"’“’e profiles are shown at evepX=10.1=1, (8. D*=0.10,(b).

integro-differential equatioii38) for two initial-value prob- D#=0.25,(c). D*=0.50;(d). D*=1.0.
lems obtained by a spectral method described in Appendix B. _ ) ]
Fig. 5c). For the highest roughness wib?=1.0 [see Fig.
5(d)], inertia is overpowered by roughness and nonlinearity
VI. TRANSFORMATION OF A SOLITON OVER A LONG is no longer effective. The wave crest always travels at a
ROUGH SEABED speed lower than the linear wave speed for a smooth bed.
i _ . . As a largerl corresponds also to stronger disorder, stron-
~ We first discuss the evolution of a soliton over the totalger gissipation and faster attenuation are expected, and are
distance of 8= X< 100 covered by roughness of givBrand  ~5nfirmed by Figs. @) and &b) for the sameD?=0.1. If the

. Two seabeds with low-amplitude roughnesses are first chaseahed roughness is higher, the effect of correlation length is
sen for the same correlation length Iof1. The numerical e important, as seen in Figgayand 1b).

solutions are shown in Figs(® and %b). As X increases,
the wave profiles flatten gradually witk. For the lower
roughness, the wave crest first travels forward in the moving
coordinate, therefore faster than the linear phase speed over a
smooth bed(1 in dimensionless form oxgH in physical Across a linear random medium, a sinusoidal wave train
dimensions, in the stationary frame of referencks the loses its amplitude. After crossing a finite strip of disorder,
crest loses its height with, it also slows down to below the the transmitted wave diminishes exponentially with the strip
linear phase speed. By comparing Figéay%and %b), the  width, but remains sinusoidal. For the nonlinear dispersive
soliton is slowed down sooner by the bed with higher rough-system here, it is interesting to see whether the much flat-
ness. For larg¥, the asymptotic profile is described (B5).  tened, transmitted pulse, which is no longer a soliton, may
With still higher roughness, solitons are further slowed, adead to fission of new solitons.
shown in Figs. &) and d). For D?=0.5, the forward push Let us consider the evolution of a transient pulse, after it
by inertia loses more ground to retardation by roughness, semmerges from a random strip of lengky. The computed

VIl. SOLITON FISSION AFTER PASSING A RANDOM
STRIP
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08 A@) g
06 ............... T Lo
woali *..’ ....... .
o2k i Y X A ANVYOONN - - - e d
-20 -10 0 20 30 40
S
10 20 30 40
[

FIG. 6. Effects of correlation length on soliton evolution over a

random seabed. The total distance of travel is (D& X< 100).
Wave profiles are shown at evety)X=10. D?=0.10,(a) 1=0.5; (b)
1=2.0.
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08

06

¢ 04

0.2

o
X 150

-100

FIG. 8. Fission of solitonlike pulses after a soliton passes a finite
strip of random seabet=1.0,X,=5, D?=0.25. The last profile is at
X=Xp=300.

Pu —
- L T op= . (69)

The number of solitons is equal to the number of eigenvalues
\, roughly given byVAjL, whereA, is the height and. the
width of the initial pulse(co,0).

For the fixed correlation length=1, we have first com-

{(o,Xp) is used as the initial data to compute the subsequerniuted the soliton evolution over rough beds of different mean

evolution of {(a, X) for X> X, from the classical KdV equa-
tion. By dropping the right-hand side ¢88) and using the
transformation,

o |

we reducg38) with D?=0 to the canonical form

{—-4

2 1/2_ 2 3/2
é O'X—XO—>6 é T (67)

,-60 {7+ 0. (68)

é’(TO'U'

According to the inverse scattering theory of Gardeeal.
[37], an initial profiIeRF, 0) can disintegrate into a number
of new solitons if real negative eigenvalues can be foun
from the following Schrédinger equation wiﬁ?, 0) as the
potential:

-20

-30

-40

FIG. 7. Effects of correlation length on soliton evolution over a

random seabed. The total distance of travel is @& X< 100).
Wave profiles are shown at evety)X=10. D2=0.50,(a) 1=0.5; (b)
1=2.0.

square height®? and widthsX,. For each set ofD, X,) the

final profile atX, is used as the initial data to compute the
subsequent fission by solving the usual KdV equati4).
Typical long-time evolutions are shown in Figs. 8—-11. Fis-
sion into two, three, four, and five separate pulses, after a
soliton escapes a finite random bed with the total exignt
=5, 20, 30, and 50, can be seen. The tallest pulses are essen-
tially solitons.

From many numerical solutions of the eigenvalue prob-
lems governed by69), the number of disintegrated soliton-
like pulses is displayed in the plane Bf and X, all for |
=1. The thresholds of fission are found to be hyperbolas
D?X,=constant, as shown in Fig. 12. Thus more solitons of
diminishing amplitudes emerge after transmission if either
D? or X, is larger.

We first examine why the number of solitons increases
onotonically withD?X,. Recall from Sec. V that after trav-
ling a distanceXy over a random bed a soliton flattens by

diffusion to a pulse of height proportional {®2X,) /2 and
length proportional t¢dD?X,)2. Their product, which deter-
mines the number of eigenvalues and the number of solitons
in the inverse scattering theory, is

(heighd X (length? = (D21X)*/2. (70)
Hence it is the flattening effect of diffusion that leads to the

proliferation of solitons with increasinB?X,, as found nu-
merically.

X

1000 "0

100 50 g 0 -50 -100

FIG. 9. Fission of solitonlike pulses after a soliton passes a finite
strip of random seabet=1.0,X,=20,D?=1.0. The last profile is at
X=Xu=900.
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150 100 50 g 0 -50 -100

FIG. 10. Fission of solitonlike pulses after a soliton passes a
finite strip of random seabetk 1.0, X,=30, D?=1.5. The last pro-
file is at X—Xy=1400.

FIG. 12. Number of disintegrating solitons after a finite random

Next, we point out that the proliferation of vanishingly };eabedl=1 0

small solitons is of little dynamical consequence since the
are geometrical forms of negligible energy. As seen from ) o

(44), the classical soliton of any dimensionless amplitdge ~Many small and flat solitons of vanishing energy.

has the dimensionless wavelengthKlwhere K=y3A,/4.  Similar analyses of problems in geophysical fluid dynam-
Although the corresponding ratio of nonlinearity to disper-/cS Such as internal waves, and in fiber optics, should be of
sion(Ursell parameterA,/K?=4/3 isindependent oA, the considerable scientific and engineering interest.

total energy of a soliton is proportional to

% o 3 3 3/2 ACKNOWLEDGMENTS
f §2d0':A§f Secﬁ\/%od(r:(%“o) . (71

We acknowledge with gratitude the financial support by
) o ) the U.S. Office of Naval Resear¢®rant No. NO0014-89J-
Therefore, a soliton of vanishingly small amplitude has van3128, Dr. Thomas Swearand the U.S. National Science

ishingly small energy. In conclusion, past a longer or morergundation(Grant No. CTS-0075713, Dr. John Foss, Dr. C.
disordered rough bed, a soliton becomes a flatter pulse aft¢r chen, and Dr. Michael W. Plesnigk

transmission, and procreates a larger number of solitons of
vanishingly small amplitude and energy.
APPENDIX A: DETAILS OF RANDOM FORCING

VIIl. CONCLUDING REMARKS In terms of the Fourier transform, we can write
For long waves over a randomly rough seabed, we have o 1 (" o _
studied the accumulated effects of multiple scattering by dis- Pl ike >0 7 X) Dk

ordered irregularities on the seabed. In addition to the usual

assumptions of KdV approximation that nonlinearity is com- 1 (~ o _

parable to dispersion, we assume that the ratio of random- = —f ikeée k7 (k, X) kg, (A1)

ness height to mean depth is comparable to that of mean 2m)

depth to the characteristic wavelength. Disorder is shown tQhere

cause diffusion, which leads to spatial attenuation of ampli-

tude, flattening of profile, slowing down of wave advance, E=x'-%x r1=t'-t.

and reduction of dispersion. After a large region of random'\Iote that

scattering, dispersion loses ground to diffusion, while non-

linearity can still remain. Unlike sinusoidal waves in linear IG 0G 1

cases, attenuation with distance is algebraic rather than ex- X msgr@ =- 55(7'— |€)sgr(é). (A2)

ponential. If the random region is finite in length, the trans-

mitted wave is a flattened pulse which disintegrates intdJsing these results ii18), we get, after simple variable
transformations, that

0:1.5 ““““ | _<b(x)%>:ﬁ J J fi drdfdké“x—t)iko%

X[[(&)Z(Ke e s(r— |¢)sgné).

Since

150 100 s0 O o0 -50 -100

FIG. 11. Fission of solitonlike pulses after a soliton passes a
finite strip of random seabet=1.0, X,=50, D?=2.5. The last pro-
file is at X—Xy=3000. the triple integral above becomes

| areratr- ey =

016302-9
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- <b(x)%> S %T J f dgdkék(x‘%(k)%aig

X[I'(£X)e ™ ek sgrig),
which gives(20) after using the definitiori21).

PHYSICAL REVIEW E 70, 016302(2004)

The discrete Fourier transform @B2) is

9lm _ 5o
X =G(MK){m

3imK,
4

Fal 82, (B4)

where F,,, denotes themth component of discrete Fourier

APPENDIX B: NUMERICAL METHOD FOR SOLVING
EQ. (38)

We choose a computational domdid<o<L] and im-
pose periodic boundary conditions at both ends. The domain
must be large enough so that there no wave disturbance

transform and

2
2 D 1
G(k) = - %kZDZM +e %)tk + ik3<6

212 [ 232 L [of
reaches either end during computation. We first scale the _ DA vme ’frfl(\Zkl)) 85)
spacelike variabler so that the computational domain isr2 2 2y2kl
o The fourth order Runge-Kutta method is used to solve
E=Ko= T (B1)  (B4) numerically:

The governing equatio(88) is rewritten as

LT T L S N SR '
IX 2 79¢ 698 20¢ 8 o9&

oo 2
AJ Ras
16)_,. 9¢&'?

(g—g’)2>

xexp - ———— |dé’

P gz )%
16 ), 0¢&°

If—f'l) ,
xerfc(z,_K dg}. (B2)

\"2 |_|

The displacement at uniformly spaced nodes is then

represented by a discrete Fourier series
N/2

Z e,

m=-N/2+1

{(§) = (B3)

where §;=2mj/N.

.- At R R R
M=t E(gkl,m +20om* 20am* Skam),  (B6)

where

3imK,
4

Gam=G(MK)Zh - Ful (D), (B7)

- o At ) BimK At \?
gkz,m—g(mKL) §m+ 2 gkl,m ]:m §+ 2 gkl ’

4
(88)
oo )25
bam=GMK)| {nt —-diem 2 U\t Sle) |
89)
- - - 3imK
Giam= GMKO @+ Mo ) =4 Fal(£+ G0,
(B10)
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